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J .  Phys. A: Math. Gen. 16 (1983) 4293-4306. Printed in Great Britain 

On the equipartition law in quantum statistical mechanics 

M Fannest, Ph Martin$ and A Verbeure 
Instituut voor Theoretische Fysica, Universiteit Leuven, B-3030 Leuven, Belgium 

Received 4 July 1983 

Abstract. We prove that the fluctuations of the total momentum of a system of quantum 
mechanical particles at equilibrium obey the classical equipartition law whenever the 
correlation functions have an integrable clustering. The result holds for a large class of 
translation invariant two-body potentials and for arbitrary statistics. We also discuss higher 
moments of the total momentum and position. Finally the behaviour in models with broken 
symmetry is analysed. 

1. Introduction 

In classical statistical mechanics it is well known that the kinetic energy per particle 
is equal to 3kT/2. This law of equipartition yields a direct and intrinsic method for 
the definition of the absolute temperature, irrespective of the interaction or the phase 
state. 

It is also well known that the kinetic energy of a quantum mechanical system in 
equilibrium does not follow the equipartition law. For interacting particles and to 
second order in Planck’s constant this quantity is always strictly larger than the classical 
value (Landau and Lifshitz 1967). This also holds for quantum particles without 
statistics confined by external forces (Martens and Verbeure 1979). The statistics, 
however, does change this result, indeed e.g. a free Bose gas (respectively Fermi gas) 
has a kinetic energy strictly smaller (respectively larger) than 3kT/2. Therefore the 
temperature of a quantum system cannot be determined by a measure of its kinetic 
energy independently of the interactions and of the statistics. 

However, let us continue with the free Bose (Fermi) gas at equilibrium in a cubic 
box of side L with periodic boundary conditions. The density p&3, z )  in the thermo- 
dynamic limit is given by 

P ~ P ,  2) = I d3pf&, P,  z )  

where 

M p ,  P, 2 )  = (2.r)-3 z/[exp(pp2/2m) F 21 (1) 

is the Bose (resp Fermi) distribution, z is the activity and taken to be larger than one 
in the Bose case (i.e. without condensation; for the case z = 1, see 0 4). Then if Pr is 
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the total momentum observable for the gas in the box, one finds 

= - (a /a /3)1npF(P,z)=$kT (2) 

which shows that the fluctuations of the total momentum in the thermodynamic limit 
follow the classical law independently of the statistics. 

The point of this paper is to give a rigorous proof of the fact that under fairly 
general clustering conditions, for non-trivial translation invariant interactions between 
the particles and a large class of boundary conditions, the fluctuations of the total 
momentum are still given by their classical values. Such a result has been known for 
a long time (Blatt et a1 1955). The demonstration relied on an argument for finite 
systems disregarding the boundary conditions. The main idea was based on the 
following heuristic considerations. 

Since the total momentum is nothing but the momentum of the centre of mass of 
the whole system it decouples from the relative coordinates. It will behave as the 
momentum of an independent macroscopic free system and hence by the computation 
above in a classical way. 

It is clear that this argument can only hold asymptotically in the thermodynamic 
limit and not for a finite volume quantum system. In the latter case the transformation 
of the particle coordinates to the centre of mass and relative coordinates is not canonical 
because of the presence of boundary conditions. Therefore the motion of the centre 
of mass is neither independent of the other degrees of freedom nor of the choice of 
the boundary conditions. It was indeed noted that different choices may lead to 
different results (Lebowitz and Onsager 1957). Clearly in order to obtain the result 
even in the thermodynamic limit, one needs cluster properties strong enough to 
eliminate the effects of the boundary conditions of the finite system. 

Technically we take the following point of view. We assume that we are given an 
infinite system in an equilibrium state w (i.e. positive linear normalised functional on 
a suitable quasi-local algebra), characterised by the energy-entropy balance correlation 
inequality (Fannes and Verbeure 1977, 1978). Then for any sphere of radius R and 
volume V we define the bulk momentum PR of the particles in this sphere; it represents 
a local approximation of the momentum of the infinite system. We prove that 
w(lPRI2)/2mpV converges to 3kT/2  as R tends to infinity when the state w has 
integrable clustering properties. This result is also formulated as an exact sum rule 
for the kinetic energy per particle and the integral of the two-particle momentum 
correlation per particle which add up to 3kT. 

The paper is organised as follows. In 5 2 we bring together the necessary preparatory 
material and pay special attention to a statistics independent formulation of a quantum 
many-body system. In particular we construct the quasi-local algebra of observables 
generated by the one-particle momentum and position observables. 

Our main point mentioned above is given and proved in § 3. We also show that 
when the clustering is integrable the suitably scaled pair momentum position obeys a 
classical central limit theorem: all the joint moments are those of the Gaussian 
distribution which we would obtain for the corresponding classical quantities. 

We do not expect that these results will remain true in phases which spontaneously 
break a continuous symmetry: in such phases the clustering is too weak (non-integrable) 
(Martin 1982, Fannes et a1 1982) and our theorem will not apply. We investigate this 
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situation in 0 4 by means of the free Bose gas and the BCS model. Indeed, both models 
violate our result at high density (Bose gas) or low temperature (BCS). 

2. General setting 

As in this paper we aim at a result for infinite quantum systems independent of the 
statistics, we first describe the relevant algebra of observables in terms of its n-particle 
components, It will show much similarity with the classical algebra of observables (see 
e.g. Ruelle 1969). 

For simplicity of presentation we take X=L2(R”) ,  where v is the dimension, as 
configuration space of one particle disregarding internal degrees of freedom. The local 
algebra dl of observables per particle is the *-algebra generated by the operators 
R ( p ) f ( q ) ,  where R runs through the polynomials, f belongs to the set of infinitely 
differentiable functions with compact support in R“, q and p stand for the canonical 
observables of multiplication and differentiation (i.e. [q‘, p p ]  = 

The algebra of observables d for the infinite system consists of the sequences 
A ={A,}:=(] with only a finite number of the A, different from zero, and where the A, 
belong to the symmetrised tensor product of n copies of dl; the component A,, of 
A is the n-particle component, and A.  is a scalar. d becomes a vector space for the 
usual summation, and an algebra for the following product rule. As d is generated 
by elements of the type 

A = ( O , .  . . ,O,S,,(a,O.. .Ou,,),O,. . .), a,  E dl,  

B=(O , . . .  ,O ,Sm(b lO. . .Ob , ) ,O  , . . .  1, b , ~  d i t  

where S k  denotes the projection on the permutation symmetric operators on 
it is sufficient to define the product for these elements. We set 

where 
AB (3) 

(AB) ,  = 0 if j > m + n  or j < max ( n ,  m ) ,  

j !  
( A B ) ,  =- S, C aT( i 1 0 . . .O a m 1 @ a T ( l -  m + 1 j but i 1 n ! m ! ( j - n ) ! ( j - m ) ! ( m  + n -  j ) !  Ti U 

0..  . ~~ :a r rc , , j bucm+, l - , ,Obu~m+n- ,+~ jO .~  * @ b u ( m ,  

if max (n, m )  j c m + n ;  

T and (T run in the permutation groups of n and m ele_ment_s. 
It is clear that this product extends to, say, the set d = (d,, J&, . . .) where the G,, 

are suitable closures of (0d,)“. The *-operation is the usual operation of taking the 
adjoint. 

The above presentation of the algebra of observables is nothing but a more abstract 
form of what is usually done with Bose or Fermi creation and annihilation operators 
a - ( x ) .  In this language the n-body operator corresponding to the kth component Ak 
of the observable A is represented by 
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The product rule (3)  is a result of the Wick ordering in the product of such n- and 
m-body operators. 

A state of the infinite quantum system is a normalised linear functional w of d 
such that for all A ={A,}:=,, w ( A * A )  2 0 (positivity of U ) .  Denote by w,(n = 0 , 1 , .  . .) 
the n-particle restriction of 0, i.e. w ( A )  =Zz=o w , ( A , ) .  We assume furthermore that 
the states under consideration a re  described in terms of a family of reduced density 
matrices { p ' " ' } ~ = , , ,  where the p i " )  are positive linear operators on (0%)" with an 
infinitely differentiable kernel (yIp""/x) such that 

In the following we are  interested in properties of equilibrium states of a system 
of particles interacting via a translation invariant two-body potential V. 

By now there are many ways to characterise an  equilibrium state. For the purpose 
of this paper it will turn out that the most convenient way is by means of correlation 
inequalities. Therefore we call w an equilibrium state at inverse temperature p if for 
all A E d (Fannes and Verbeure 1977) 

pw(A*S(A) )  2 w(A*A)  ln[w(A*A)/w(AA*)] (4) 

holds, where 6 ( A )  is given by the commutator [H,  A] with the formal Hamiltonian 

H = (0, p 2 / 2 ,  v,o,. . . ) 
(corresponding to the usual second quantised form of the Hamiltonian). The two-body 
potential V is a multiplication operator by v(xl - x2) on X @  X, where the function U 
satisfies 

(i) x E iw" + U(X)  E R is differentiable AE; 

( i i )  U ( X )  = U ( - x )  and rotation symmetric; 
(iii) there exists an  77 > 0 such that I ( 1 +  I X ~ " ) ~ V U ( X ) ~  dx < W. 

In writing the equilibrium condition (4) we have implicitly assumed that the state w 
extends to all observables of the form S(A),  A E d. There a re  some technical reasons 
why in general S(A)&d', in particular if U is not of finite range 6(A)  is not strictly 
local; however, it is reasonable to  expect on the basis of condition (iii) on the potential 
V that the equilibrium states indeed d o  share the assumed extension property. 

Finally we shall deal only with equilibrium states w which are  Euclidean invariant 
and time reversal invariant. Therefore in particular let T be the homomorphism of 
the space translation group R" into the *-automorphisms of d. Then one  has 
w ( T , ( A ) )  = w ( A )  for all x E R", A E d. Let U be the time reversal anti-automorphism 
of d defined by ~ ( p )  = -U@), ~ ( q )  = q ;  then w ( c r ( A ) )  = w ( A * )  for all A E d. 

In addition we remark that any state w satisfying (4) is stationary, i.e. w ( S ( B ) )  = 0, 
B E  A. This follows by substituting A = 1 +AB, B = B* E d, A E R in the inequality (4). 

3. Fluctuations of the bulk position and momentum 

For infinite systems quantities like total momentum, total mean position, total number 
of particles, etc a re  ill defined; instead one  should consider the corresponding local 
densities. In particular one introduces the following local approximations. Consider 
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the sequence ( f R ) R E R *  of real functions on R "  such that 

f R  E c?? O S f R  S 1, ~ ~ V " f R ~ ~ ~  < CO uniformly in R, 

1, 1x1 R, 
fR(.)={ o, 1x1 3 R + 1. 

We denote by P " ( f R )  the observable corresponding to the bulk momentum located 
in the support of fR, where in general 

P"(f) = (0, t ( p " f ( d + f ( q ) p " ) ,  0, * . . I ,  for anyfe  C: (R"), 

and the corresponding position operator is Q U ( f R )  where 

CY = 1 , .  . . , v ,  

a" = (0, q U f ( q ) ,  0 , .  . * . I ,  CY = 1,. . . , v, for any f~ C;. 

It is clear that both P " ( f )  and Q " ( f )  belong to Sp. 
For notational convenience we introduce for any Euclidean invariant state w the 

following quantities: the density p = (xlp"'lx) and the density and momentum correla- 
tions 

i n )  U ( p ' " ' P ; l . .  . P?)(X,,. , . ,  Xn-1, 0) = ( X I r . .  . , xn-1, olp PI,' * .  . PP,"lXl,~ . . ,  X n - I ,  0). 
Due to rotation invariance of the state one has 

( p " ' p " )  = 0, ( P"'P"PP) = P ( Y  P " ) * ) .  (6a, b )  

First we derive expressions for the momentum and position fluctuations in terms 
of the one- and two-body correlations. 

Lemma 3.1. Let w be a Euclidean and time reversal invariant state with density p 
and the cluster properties 

I dxl(P '2 'Pw)(x)l  <a, CY,y=l, . . . )  v, 

dxl(p'2')(x)-p21<cc. 

Denoting by X u  the volume of the unit ball in v dimensions, then 

where ,y is the compressibility. The last equality holds if w is an equilibrium state at 
inverse temperature p. 
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Then using ( 6 a )  and integration by parts 

wl( [~"( f )211)  = ( P ' " ( P " ) ~ )  dxf2(x) +$P ( v " f ( ~ ) ) ~  dx. 

About the two-particle contribution using the time reversal invariance one gets 

since ( V " f R ) 2 ( ~ )  dx = O ( R  " - I ) ,  due to the presence of the derivative and the special 
choice of f R  ( 5 ) .  

About the two-particle contribution, the quantity 

( c f i ~ ) - 1  J fR(u+x)fR(u) dx 

is uniformly bounded ( R  > 1) and converges to one for each fixed U. Hence using the 
momentum cluster condition, the first term of (7) converges to the desired result as 
a consequence of the dominated convergence theorem. For the second term of (7) ,  
since now 

uniformly in U, using the density cluster condition and again dominated convergence 

This proves (i) .  
To prove (ii), remark that 

w ( Q " ( f R  2, - w ( Q " ( f R  ) 

= P  I dx ( ~ " f ~ ( x ) ) ~ +  J du ( ( P ' ~ ' ) ( u ) - P ~ )  dx (x+u)" f~ (x+U)X"f~(X)  

and the result follows by computing the limit R + 03 in the same way as above. 
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The main point of the paper consists in calculating the value of the momentum 
fluctuations in an equilibrium state w defined by (4). We do not need this strong 
inequality but the following weakened form, 

Pw(A*S(A)) 3 w ( [ A * ,  AI), A €  d, (8) 

which follows from (4) and a ln(a/b)  

operator with a simple commutator [A*, A]. This is realised by the choices 

a-  6 ;  (a ,  b>0) .  
In order to make an optimal use of (8) it is important to choose for A a non-normal 

A: =P"(f)+isQ"(g),  ( Y = l , .  * .  , v ;  & E R ,  (9) 
where f and g are appropriate cut-off functions. 

Theorem 3.2. Let w be a Euclidean and time reversal invariant equilibrium state 
satisfying the cluster properties stated in the lemma. Then the bulk momentum density 
fluctuations are given by 

( P ' " ( P " ) ~ ) +  1 dx ( ~ ' ~ ' p f p ; ) ( x )  =pkT,  (Y = 1,.  . . , v. 

Proof. Substituting the operators A: (9) in (8) and using the time invariance of the 
state in the form 

we get 
P [ w  (P" (f) 6 (P" (fl 1) + E ' w  ( Q" (g) 6 ( Q" (g)) 1 

o =  w ( G ( Q " ( g ) P " ( f ) ) )  = w(G(Q"(g))P"(f))+o(Q"(g)~(P"(f))) 

+ iEw (P" (f) 6 ( Q" (g))) + iEw ( 6  ( Q" ( g ) ) P "  (fl) 
3 -2i~w([Q"(g),  P"(f)l). (10) 

We choose for f a spherically symmetric function fR in the class ( 5 )  and for g a real 
function gR defined by 

with h E C: (Et'), h(r )  = 1 for 0 s  r S 1, h(r )  = 0 for r 3 2. We shall prove consecutively 
the following steps: 

gR(X) = h( l x l /R )  

(a) 
(b) U( Q" (gR)6(Qm(gR)) = O(R "); 
(c) (~J?")-'~(~"(fR)6(Q"(gR))+6(Qa(gR))P"(fR)) is proportional to the 

momentum fluctuations and converges as R + 00 to -2i(( p"'(  p")') 
+ J ( P ' ~ ' P ~ P ; ) ( X )  dx);  

(P" (fR ) S (P" (fR ))) = O( R "- " ) + O( R '-I) ; 

(d) (Z,R")-'w([Q"(gR),P"(fR)]) converges to ip as R +CO. 

Now the main argument is the following. Divide the inequality (10) by ZJ? ', and 
suppose that (a)-(d) are proved; letting R +CO, as E is arbitrary one gets the result of 
the theorem. 

Now we proceed to the proof of the points (a)-(d). 

Proof of (a). According to the definition of 6 (4) one finds that the non-zero 
components of S(P"(fR)) are 

( I l a )  [ ~ ( P " ( ~ R ) ) ] I  =-ip"p*vfR + i P " . h f ~ + f p * V  V"fR ++ibV"fR, 

[ ( p m  ( f R  )) 12 = i(fR (41 ) - fR ( q 2 ) )  (v 7 v, (41 - q2) i d R  (41 I 4 2 )  3 ( 1 1 b )  
where V; stands for the derivative with respect to the variable indexed by 1. 
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where C, ( j  = 1, 2, 3)  are constants independent of U and R. Hence 

= O( R "-"). 

The second term of (12) handled by the bound j d x  ( v " f R ( ~ ) I = O ( R Y - l )  is itself 
O( R " - I ) .  

The three-particle contribution is of the form 

03([P'(  fR 16 (P" ( f~ ) I d  = U&( PP f R  (41 + fR (41 )pT ) 4 R  ( 4 2 ,  q3)  + perm symm) 
where qhR(q2, q3)  is a real function (see ( l l b ) ) .  This contribution vanishes by time 
reversal invariance. All this proves (a). 
Proof of ( b ) .  According to  the definition of 6 (4) one finds 

S(Q"(gR))={O,-ti ( p ' v ( q " g R ) + v ( q " g R ) ' p ) , o , .  ( 13a)  
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Using (13b) and time reversal invariance of the state one gets 

@(Q" (gR)S(Q"(gR))) 

= - io (0" (gR ) p  ' O(X" (gR))) 

=iW(P'V(XegR)Qn(gR)) =-Piw([Q"(gR), p ' V ( x " g ~ ) ] )  

=gp dx IV(XngR(X))lZ=tpRY dx IV(x"h(X))1* 5 5 
= O ( R " ) .  

Proof of (c) .  According to (13b), the product rule (3) and ( 6 a )  the one-particle 
contribution to 

w(p"  ( f R  ) 0" (gR 1)) -b ( ( Q" (gR ))pa ( fR 1) 
is given by 

-2i(p"'(P")') I dXfR (x)V"(x"gR (X)) -t ip dX V"fR ( X ) A (  X"gR ( X ) ) .  5 
lim 7 dXfR(X)Va(XagR(X)) = lim 5 dyfR(yR)(h(y)  + y " V " h ( y ) )  =I.,. 

(14) 

Since lA(x"gR(x))l C C,/R the second term of (14) is clearly O ( R  
first term of (14) is concerned, one finds 

As far as the 

(15) 
R-r R l l  R - x  

This follows by dominated convergence from the fact that f H (  yR) = h( y) + 
y " ~ ~ h ( y ) = l  when 0 ~ l y l < 1  and l imR,,fR(yR)=~ when l y l > l .  

The two-particle contribution becomes, after having applied time reversal invari- 
ance and rotation invariance of the state, 

-21 d u  ( p ' * ' p : P Z ) ( U )  dXfR(x+u)VY(XagR(X)) 5 
-ti 1 du ( ( p ( 2 1 ) ( U ) - p 2 )  1 dx (VnfR)(X+U)A(X"gR(X)). ,(16) 

Using again /A(xagR(x)) /S  C4/R and the cluster condition, the second term of (16) 
is clearly O( R 

-I 

The first term of (16) gives a contribution because 

by the same argument as in (15), the above integral being uniformly bounded with 
respect to U. 
Proof of ( d ) .  A direct computation of the commutator and an argument as for the 
first term of (14) yields immediately 

= ipC,. 
This concludes the proof of the theorem. 
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In  the main theorem we studied the second moment of the momentum. Now we 
show that under the conditions of LL-clustering for the higher-order correlations the 
suitably scaled pair momentum-position becomes classical with the same distribution 
as one would obtain from classical statistical mechanics. 

'The L'-clustering condition is defined in terms of the fully truncated expectation 
values defined as follows. If we denote by X either P"( f )  or Q ' ( g )  for f, g E C r  (R"), 
we define wT( X) = w (X) ,  and recursively 

w(X1 . . . x,)=w,(Xl, ,  , . 9 x,)+c wT(x l , ,  * * * 7 xto). . . w T ( x l ~ + ~ > .  * .  9 

where the sum extends over all partitions 

( i l  . . .  i a ) . . . ( i k + l .  . .  i,) 

of (1 . . . n) into p parts, p 5 2, writing in each part the indices in their natural order. 
We require that for all choices X, and n = 3 , 4 ,  . . . 

dxl . * . dxn-1 IwT(7x,(Xl),  . 9 . Y T X ~ - ~ ( X ~ - I ) Y  Xn)l<Oo (17) I 
where 7x is the space translation automorphism. Let I be a spherically symmetric 
positive function in C: (R") such that { l ( x )  d(x) = 1, l ( x )  = 0 for 1x1 > 4. Denote 

PE ( I )  = { O , t ( p O L f R ( q ) + f R ( q ) p a ) ,  0 , .  . ( 1 8 ~ )  

where ~ R ( x ) = ~ I ~ J ~ ~  d y l ( y + x )  and 

dxx".rx(Q"(I)). 
I ~ X ~ G R  

dy y"l( y + x ) ,  0,. . . 
' y 1 s R  

Q E ( 1 )  = (0, 

Notice that Q> ( I )  is also of the form Q U ( f R )  where f R  is within the class of functions 
defined in ( 5 ) .  

Corollary 3.3. Let w be a state satisfying the hypotheses of theorem 3.2 supplemented 
by the condition (1 7 ) ,  and let q", p' ( a ,  y = 1, . . . , v )  be the classical random variables 
with Gaussian distribution 

then if YR is an arbitrary monomial in the operator Pi(l)/(X,J7")1'2 and/or ( v +  
2)"*QE ( l ) / R ( X J ? " ) 1 ' 2  (see (18)), and if Yc,(q", p')  is the corresponding classical 
monomial, then 

Proof. Remark that w ( P E ( I ) )  = O  because of (6a) and also 

dy y" = 0. 
w ( Q E ( O ) = p  [ d x l ,  y l = R  d y V x + y ) ~ " = p I  IylGR 
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Therefore in order to prove ( 2 0 )  as a consequence of lemma 3.1 and theorem 3.2 it 
is sufficient to prove 

and 

(ii) lim wT( Y R )  = 0, 
R - x  

where YR is a monomial of order n in P ~ ( l ) / ( X , , R " ) 1 ' 2  and of order m in 
Q ; ( ( I ) ( v + ~ ) " ~ / ( X J ? " ) ~ ' ~ R  for n + m s 3 .  

To prove ( i )  we use time reversal invariance yielding 

Now we check (ii). It is sufficient to consider 

where X, = a"(/)  for i = i,, . . . , im and Xi =Pa(/) otherwise. 
Note that Ixp I /  R s 1.  Using the translation invariance and the cluster condition 

( 1 7 )  one concludes that for n + m 2 3 the expression tends to zero. This proves (ii). 

For notational convenience we have performed the proofs for the case where there 
is only one type of particle in the system. The formalism and the proofs of the results 
are straightforwardly extended to the case where different species of particles with 
different masses are present. In this case we define the algebra of observables with 
the different particle structure built in it; in particular, the canonical momentum and 
position operators are equipped with a supplementary index k E [ l ,  . . . , NI referring 
to the type of particles. Also a state w is now described by the reduced density matrices 
p(k:) ..,, k ,  for n particles of the type k l , .  . . , kn. 

Let P"( fR)  be the local approximation of the infinitesimal generator of the transla- 
tions of the infinite system, in terms of our notations 

and 
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where mk is the mass of the particle of type k. Then one  gets as in lemma 3.1 and 
theorem 3.2 

where P k  =(p(kl)) is the density of the particles of type k. 

4. Discussion 

It is instructive to investigate the momentum fluctuations in a couple of simple models 
showing phase transitions. This might give a better insight into the effect of these 
phenomena on the fluctuations. 

First we consider the condensed state of the three-dimensional free Bose gas. The  
particle density is given by (Lewis and Pu l t  1974) 

P = p c  + P o  = d p  f(p, P )  + P o  (21) 5 
where 

f(p, P )  = ( 2 ~ ) ~ ~  [exp(Pp2/2) - I]-', 

p c  is the critical density, p o  is the condensate density, and p is the total density. As 
in the introduction (2) one calculates 

Hence for p > pc  we find the same result as at  p = p c ,  i.e. the condensed particles d o  
not contribute to the expression (22) and therefore theorem 3.2 does not hold. This 
is obviously due to  the weak clustering in the condensed phase. In fact the momentum 
fluctuations ( p " ' p ~ p ; ) ( x )  = O( 1/(xI4) are  still integrable but the density fluctuations 
have the asymptotic behaviour 

(P"')(X) - P 2  = (Po/.IrP)lxI-' +O(jxl-'). 

As a consequence surface contributions will not v'anish as R tends to  infinity; e.g. the 
second term of (7) gives now a non-zero contribution to  the computation of 

Indeed, after integration by parts, using the rotation invariance and the asymptotic 
lim R - r  ( p a ( f R 1 2 ) /  R3. 

expansion of ( P ' ~ ' ) ( x )  -p2 ,  one  gets 
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and thus for the ideal Bose gas 

In fact this limit will depend on the type of local approximation of the total momentum. 
Remark that by the Goldstone theorem (Martin 1982, Fannes et a1 1982) the l/lxl 

behaviour of the clustering is the onset of the breaking of a continuous symmetry. 
Therefore we expect that the phenomenon described for the ideal Bose gas is of a 
general nature. 

Another type of phase transition is provided by the BCS model (Haag 1967). Strictly 
speaking this model does not fit into our scheme because of the non-local character 
of the interaction. The one- and two-body correlations for the superconducting phase 
are given by an extrema1 invariant quasi-free state w, determined by the following 
two-point functions. Let a: ( i  = 1,2)  be the creation and annihilation operators of 
the fermions with spin index i ( i  = 1,2) ;  then the only non-vanishing two-point func- 
tions are 

pI = w,(a:(x)a;(x)) = ( 2 ~ ) - ~  d p  t ( l  - ( E p / f l p )  tanh ipfl,), i =  1,2,  (23) 5 
w , ( a ; ( x ) a ; ( y ) )  = ( 2 ~ ) - ~  d p  (6 ,Sp/2f lp)  tanh ($?fl,) e'p''-y), (24) I 

I 

where 

Ep=ltP2-PlI ,  flp = ( E t  + / 6 p S p / 2 ) 1 ' 2 ,  S,  = 0 for lPI > /Pol 

and 8, is a constant determined by the 'gap equation' 

1 = & ( 2 ~ ) - '  d p  (lSP1*/fl,) tanh $0, 

From (23), (24) one calculates 

If 6, =0,  w, is the free fermion state, the normal phase and (25) yields 3kTp with 
P = P1 +P2.  

If 6, # 0 then as (25) is a continuous function of the temperature tending to  

&3 [ 5 d P PZ ( 1 - 2) + 5 d P PZ y ] 
for  T + O (  p + C O ) ,  and as this expression is strictly positive, theorem 3.2 does not hold, 
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